

МОДУЛЬ ПРОЦЕССОРНЫЙ ELV-MC03-SMARC

rev.3.0

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

РАЯЖ.467444.004Д17

СОДЕРЖАНИЕ

l.	ВВЕДЕНИЕ	3
2.	назначение изделия	4
3.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	5
4.	СОСТАВ И ВНЕШНИЙ ВИД	6
4.1	Структурная схема	6
4.2	Состав изделия	7
4.3	Внешний вид	7
4.4	Основные компоненты	8
4.5	Световые индикаторы	10
4.6	Сигналы управления	11
4.7	Внешние соединители	13
4.8	Сигналы прерываний периферийных устройств	27
4.9	Интерфейсы	28
4.10	Питание	38
5.	РАБОТА ИЗДЕЛИЯ	41
5.1	Установка и подключение изделия	41
6.	возможные неисправности	42
7.	дополнительная документация	43
8.	ОТЛИЧИЯ ВЫПУСКАЕМЫХ ВЕРСИЙ ИЗДЕЛИЯ	44
8.1	Отличия модулей процессорных ELV-MC03-SMARC версий 3.0 и 1.1	44
9.	контактная информация	45
10.	ИСТОРИЯ ИЗМЕНЕНИЙ	46
при	ПОЖЕНИЕ А УСТАНОВКА И ПОЛК ПЮЧЕНИЕ ИЗЛЕЛИЯ	47

1. ВВЕДЕНИЕ

Настоящий документ распространяется на модуль процессорный ELV-MC03-SMARC исполнений РАЯЖ.467444.004, РАЯЖ.467444.004-01 (без установленного процессора) (далее – изделие), стандарта SMARC 2.1, выполненный на базе микросхемы интегральной К1892ВМ21Я (процессор) и предназначенный для применения в составе интеллектуальных вычислительных систем в качестве встраиваемого процессорного модуля.

Настоящий документ описывает ревизию изделия rev.3.0.

Руководство пользователя содержит общие сведения об изделии и предназначено для ознакомления с его устройством и техническими характеристиками, а также изучения правил обращения с изделием с целью обеспечения правильной и безопасной эксплуатации.

Свидетельство о приёмке изделия и гарантии предприятия-изготовителя приводятся в паспорте РАЯЖ.467444.004ПС, который поставляется в комплекте изделия.

АО НПЦ «ЭЛВИС» оставляет за собой право в любой момент вносить изменения (дополнения) в руководство без предварительного уведомления потребителя о таком изменении (дополнении).

Документация доступна по запросу через отдел технической поддержки, по электронной почте support@elvees.com и на портале техподдержки support.elvees.com.

Все указанные в настоящем документе товарные знаки принадлежат их владельцам.

2. НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Изделие представляет собой аппаратно-программный комплекс, предназначенный ДЛЯ применения В радиоэлектронной аппаратуре различного назначения (телекоммуникационное оборудование, автоматизированные управления системы индустриальные технологическими процессами, компьютеры, мобильные APM, измерительные приборы, оргтехника, бытовая техника и т.п.) в качестве встраиваемого процессорного модуля форм-фактора SMARC 2.1 и позволяет значительно упростить разработку конечных устройств на базе процессора К1892ВМ21Я, предоставляя пользователю готовое аппаратное решение с широкими функциональными возможностями и большим набором интерфейсов ввода вывода.

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические параметры изделия приведены в таблице 3.1.

Таблица 3.1 — Основные параметры модуля процессорного ELV-MC03-SMARC

Наименование параметра	Значение параметра
Форм-фактор	SMARC 2.1
Процессор К1892ВМ21Я	4× ARM Cortex A53; 2× DSP ELcore-50; 1× IMG PowerVR Series8XE GE8300; 1× ARM Mali-V61
ОЗУ	2× 4 Γ̄ LPDDR4
ПЗУ*	QSPI NOR Flash, 16 ME; eMMC 16(32) ΓΕ
Высокоскоростные интерфейсы	2× 1G Ethernet (PHY); 1× PCIe 4x Gen.3 Root Complex; 1× SATA III; 1× USB 3.0 HOST; 1× USB 3.0 HOST/Device; 3× USB 2.0
Видеовыходы	1× HDMI 1.4; 1× LVDS dual channel
Видеовходы	1× MIPI CSI (4-lane); 1× MIPI CSI (2-lane)
Низкоскоростные интерфейсы	4× UART; 5× I2C; 2× I2S; 1× SPI; 1× SDMMC; 1× QSPI; 2× CAN (MFBSP); 1× PWM; 12× GPIO
Прочее	часы реального времени (RTC); сигналы управления питанием; отладочный порт JTAG; служебные сигналы; сигналы сброса
Операционная система	Linux
Напряжение питания, В	основное: 5,0 ± 5 % (3,3 ± 5 %)**; RTC: 3,3 ± 5 %
Потребляемая мощность, Вт, не более	15
Габаритные размеры, мм, не более	82,0×50,0×8,0
Масса, г, не более	50
.u.o.=	

^{*}Объем памяти ПЗУ определяется требованиями заказчика или спецификацией контракта.

^{**}В случае работы изделия при напряжении питания 3,3 В с допустимым отклонением \pm 5 %, требуется дополнительная настройка изделия согласно А. 2 Приложения А.

4. СОСТАВ И ВНЕШНИЙ ВИД

4.1 Структурная схема

Структурная схема изделия приведена на рисунке 1.

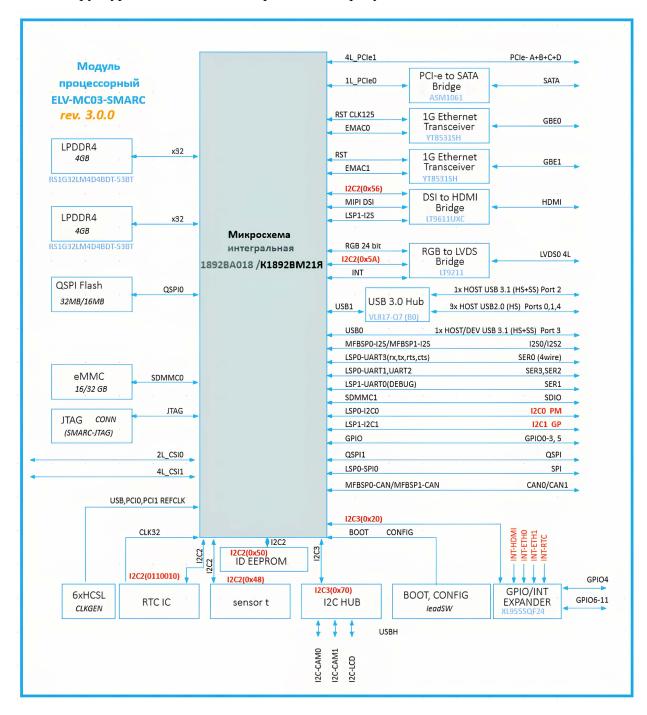


Рисунок 1 — Структурная схема модуля процессорного ELV-MC03-SMARC

4.2 Состав изделия

Модуль процессорный ELV-MC03-SMARC выполнен в форм-факторе SMARC 2.1, на базе процессора K1892BM21Я и ориентирован на приложения, требующие высокой производительности при низком энергопотреблении.

В качестве инструментального средства для отладки программного обеспечения и прототипирования устройств, использующих модуль процессорный ELV-MC03-SMARC, может быть использован комплект отладочный Салют-SMARC РАЯЖ.442621.015 (модуль процессорный ELV-MC03-SMARC + модуль отладочный ELV-SMARC-CB).

Список светоизлучающих диодов приведён в таблице 4.1.

Описание сигналов управления приведено в таблице 4.2.

Режимы загрузки процессора приведены в таблице 4.4.

4.3 Внешний вид

Модуль процессорный ELV-MC03-SMARC реализован в виде платы печатной многослойной с установленными на ней элементами и не имеет корпуса. Внешний вид изделия приведен на рисунках 2, 3.

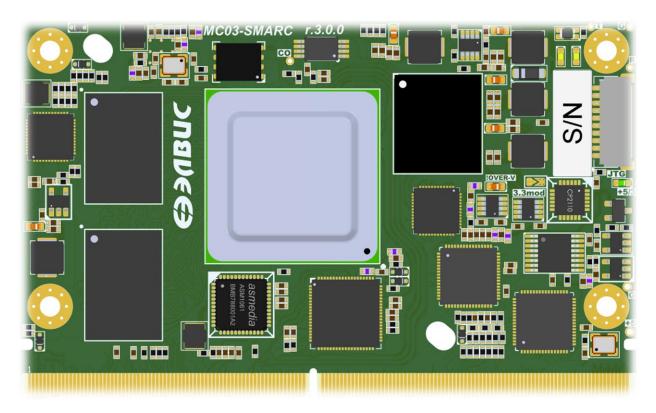


Рисунок 2 — Внешний вид изделия сверху

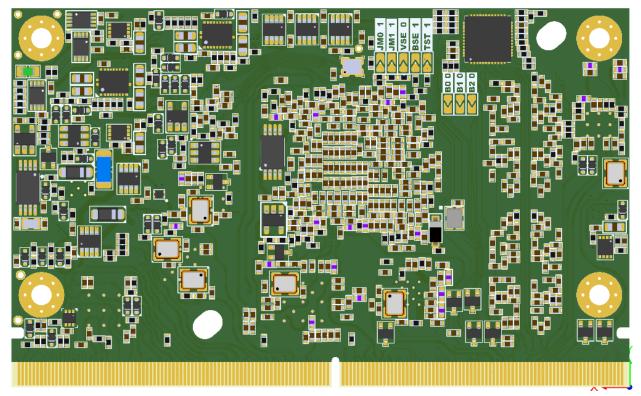


Рисунок 3 — Внешний вид изделия снизу

4.4 Основные компоненты

4.4.1 Процессор К1892ВМ21Я

Процессор K1892BM21Я представляет собой высокопроизводительную микропроцессорную систему на кристалле, изготовленную по КМОП-технологии с минимальными топологическими размерами элементов 28 нм.

Процессор имеет следующие основные технические характеристики:

- процессорное ядро: 4×ARM Cortex A53;
- кластер на базе двух DSP-ядер ELcore-50;
- графический акселератор ARM Mali-V61;
- IMG PowerVR Series8XE GE8300.

Примечание — Более подробные сведения о процессоре «К1892ВМ21Я содержатся в Руководстве пользователя (см. Раздел 7 «Дополнительная документация» настоящего документа).

4.4.2 Память LPDDR4

К портам DDRMC0, DDRMC1 процессора K1892BM21Я подключено по 32-разрядной микросхеме LPDDR4 RS1G32LM4D4BDT-53BT, объемом по 4 Γ Б каждая. Таким образом, суммарный объем оперативной памяти изделия равен 8 Γ Б. Максимальная частота работы 1066 М Γ ц.

4.4.3 Память еММС

К порту SDMMC0 процессора К1892ВМ21Я подключена микросхема еММС FEMDNN016G- 58A46 (FEMDNN032G-A3A55) объёмом 16 (32) ГБ, которая поддерживает восьмиразрядный режим работы.

Микросхема соответствует стандарту JEDEC/MMC №JESD84-B51.

4.4.4 QSPI-флеш

К порту QSPI0 процессора К1892ВМ21Я подключена микросхема W25Q256JWPIQ объёмом 32 МБ, представляющая собой NOR флэш-память с последовательным интерфейсом.

Микросхема W25Q256JWPIQ может использоваться в качестве источника загрузки процессора, если выбран соответствующий режим загрузки (см.4.6.2, таблица 4.4).

Примечание – При поставке изделия в микросхему установлен конфигурационный файл загрузчика U-Boot.

4.4.5 Приемопередатчик Ethernet

Два трансивера Ethernet (РНУ) подключены к контроллерам Ethernet MAC процессора К1892ВМ21Я по интерфейсам RGMII и поддерживает скорости 10, 100 и 1000 Мбит/с с возможностью автосогласования скорости (auto-negotiation).

Микросхемы приемопередатчиков Ethernet YT8531SH соответствуют стандарту IEEE 802.3.

4.4.6 Передатчик HDMI

К портам MIPI DSI и I2S0 процессора К1892ВМ21Я подключена микросхема передатчика LT9611UXC.

Микросхема LT9611UXC соответствует стандарту HDMI 1.4.

4.4.7 Передатчик LVDS

К порту VPOUT процессора К1892ВМ21Я подключена микросхема передатчика LVDS LT9211.

Микросхема LT9211 соответствует стандартам VESA и JEIDA.

4.4.8 SATA контроллер

К порту PCIe0 процессора К1892ВМ21Я подключена микросхема PCIe-SATA контроллера ASM1061.

Микросхема ASM1061 соответствует стандарту SATA III.

4.4.9 USB концентратор

К порту USB1 процессора К1892ВМ21Я подключена микросхема VL817-Q7 (В0), представляющая собой USB 3.0 концентратор (НUB), который имеет четыре порта.

4.4.10 Часы реального времени

К порту I2C2 процессора К1892BM21Я подключена микросхема часов реального времени (RTC) BL5372T.

I2C адрес микросхемы приведен в таблице 4.22 (см.4.9.11).

4.4.11 Память ID EEPROM

К порту I2C2 процессора К1892ВМ21Я подключена микросхема EEPROM BL24C32A объемом 32 Кбит (4k x 8).

I2C адрес микросхемы приведен в таблице 4.22 (см. 4.9.11).

4.4.12 Контроллеры питания

Для формирования цифровых напряжений в изделии применяются микросхемы DC/DC- преобразователи IS66066, SY8003ADFC. Для формирования аналоговых напряжений применяются LDO-регуляторы RT9043GB, RS3236-1.2YUTDN4.

4.5 Световые индикаторы

В изделии предусмотрена световая индикация режимов работы. Назначение светоизлучающих диодов (установлены на лицевой стороне изделия) приведено в таблице Назначение световых индикаторов изделия приведено в таблице 4.1.

Таблица 4.1 — Список светоизлучающих диодов изделия

Обозначение	Цвет	Назначение
	Красный	Пользовательский программно-управляемый светодиод
AVD1	Зеленый	Пользовательский программно-управляемый светодиод
	Синий	Пользовательский программно-управляемый светодиод
VD1	Желтый	Пользовательский программно-управляемый светодиод
VD2	Желтый	Пользовательский программно-управляемый светодиод
VD23	Оранжевый	Индикатор наличия неисправности питания 0,9 В
VD25	Оранжевый	Индикатор наличия неисправности питания SDR 0,9 В

Обозначение	Цвет	Назначение
VD27	Оранжевый	Индикатор наличия неисправности питания 3,3 В
VD29	Оранжевый	Индикатор наличия неисправности питания 1,8 В
VD34	Оранжевый	Индикатор аварийного режима при превышении входного напряжения
VD35	Оранжевый	Индикатор наличия неисправности питания DDR 1,1 B
VD37	Зеленый	Индикатор наличия напряжения питания

4.6 Сигналы управления

4.6.1 Описание сигналов управления изделием приведено в таблице 4.2.

Таблица 4.2 — Сигналы управления изделием

Сигнал SMARC	Подключенная микросхема: вывод	Примечание
BATLOW#	Процессор K1892BM21Я GPIO1_PORTD_0	
CARRIER_PWR_ON*	Монтажная логика PG & GPIO0_PORTD_2 (nCARRIER_SHDWN)	Сигнал управления питанием
CARRIER_STBY#	Процессор K1892BM21Я GPIO1_PORTC_5	Сигнал управления питанием
CHARGER_PRSNT#	Процессор K1892BM21Я GPIO1_PORTC_3	
CHARGING#	Не используется	
VIN_PWR_BAD#**	_	Используется аппаратной логикой для формирования сигналов PG и RESET на плате изделия
SLEEP#	Процессор K1892BM21Я GPIO1_PORTB_3	Сигнал управления питанием
WDT_TIME_OUT#	Процессор K1892BM21Я GPIO0_PORTB_3	Сигнал сторожевого таймера (Watchdog)
LID#	GPIO EXPANDER P13	
POWER_BTN#***	GPIO EXPANDER P1	
RESET_OUT#	Формируется аппаратной логикой на плате изделия	Системный сброс
RESET_IN#	Используется аппаратной логикой на плате изделия	Системный сброс
I2C_PM_DAT	Процессор K1892BM21Я GPIO0_PORTD_4/I2C0_SDA	Сигнал управления питанием
I2C_PM_CK	Процессор K1892BM21Я GPIO0_PORTD_3/I2C0_SCL	Сигнал управления питанием
SMB_ALERT#	Процессор K1892BM21Я GPIO0_PORTA_1	GPIO с поддержкой прерывания на процессоре
TEST#	Процессор K1892BM21Я GPIO1_PORTC_4	Включение тестового режима

Сигнал SMARC	Подключенная микросхема: вывод	Примечание

^{*} Для поддержания питания периферии изделия и платы-носителя, необходимо удерживать сигнал nCARRIER_SHDWN в положении логической единицы "1" с использованием программного обеспечения процессора. Если оставить сигнал nCARRIER_SHDWN в высокоимпедансном состоянии, то при включении изделия сигнал CARRIER_PWR_ON выставится с нужной задержкой с помощью аппаратной логики. Для отключения питания всей системы нужно выставить сигнал nCARRIER_SHDWN в положение логического нуля "0" — тогда аппаратная логика выставит сигнал CARRIER_PWR_ON в "0" и плата-носитель полностью отключит общее входное питание.

4.6.2 Режимы загрузки процессора К1892ВМ21Я приведены в таблице 4.3.

Таблица 4.3 — Сигналы выбора режима загрузки процессора К1892ВМ21Я

Сигнал SMARC	Вывод процессора
BOOT_SEL0#	BOOT0
BOOT_SEL1#	BOOT1
BOOT_SEL2#	BOOT2
FORCE_RECOV#	GPIO1_PORTC_6/SSI1_SS_3_N

Источник загрузки процессора выбирается в соответствии с таблицей 4.4.

Таблица 4.4 — Поддерживаемые режимы загрузки процессора К1892ВМ21Я

	Сигнал SMARC		
BOOT_SEL2#	OOT_SEL2# BOOT_SEL1# BOOT_SEL0#		Источник загрузки
0	0	0	QSPI0
0	0	1	ROM RISCO/QSPI0
0	1	0	ROM RISCO/MFBSP0
0	1	1	ROM RISCO/UARTO
1	0	0	ROM RISCO/SDMMC0
1	0	1	ROM RISC0 с быстрым стартом CPU из QSPI1
1	1	0	Резерв
1	1	1	Режим noBoot (RISC0 не загружается, находится в ожидании сеанса отладки)

^{**} Для включения изделия со стороны платы-носителя необходимо выставить сигнал VIN_PWR_BAD# в положение логической единицы "1" и удерживать в этом состоянии всё время работы. При установке сигнала VIN_PWR_BAD# в положение логического нуля "0", питание изделия отключается на внутренних DC/DC-регуляторах.

^{***} Нажатие и удерживание кнопки питания на плате-носителе не более 6 с, при запущенной системе ПО, влияет только на состояние соответствующего GPIO порта.

4.6.3 Состояние конфигурационных входов процессора приведено в таблице 4.5.

Таблица 4.5 — Конфигурационные входы процессора

Вывод процессора Состояние		Описание режима работы процессора		
TESTMODE	0			
JMODE0	0	Режим отладки RISC0 JTAG		
JMODE1	0			
VS_EN	1	Контур безопасности отключен		
BS_EN	0	Загрузка неподписанных образов ПО разрешена		

Примечание — По отдельному запросу возможна поставка изделия пользователю с измененными заводскими состояниями на конфигурационных входах процессора.

4.7 Внешние соединители

4.7.1 Соединитель SMARC

Для подсоединения изделия к плате-носителю используется краевой соединитель стандарта SMARC 2.1 (314 контактов). Назначение контактов соединителя SMARC, расположенных на лицевой стороне платы, приведено в таблице 4.6. Назначение контактов соединителя SMARC, расположенных на нижней стороне платы, приведено в таблице 4.7.

Таблица 4.6 — Контакты SMARC на лицевой стороне изделия

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы
P1	SMB_ALERT#	In	PU- 2,2 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTC_4
P2	GND	_	_	GND	Общий контакт	
Р3	CSI1_CK+	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ CLKP
P4	CSI1_CK-	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ CLKN
P5	GBE1_SDP	Не испо	льзуется			
P6	GBE0_SDP	Не испо	льзуется			
P7	CSI1_RX0+	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAP0
P8	CSI1_RX0-	In	ı	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAN0
P9	GND	_	_	GND	Общий контакт	
P10	CSI1_RX1+	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAP1
P11	CSI1_RX1-	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAN1

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы
P12	GND	_	_	GND	Общий контакт	
P13	CSI1_RX2+	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAP1
P14	CSI1_RX2-	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAN1
P15	GND	_	_	GND	Общий контакт	
P16	CSI1_RX3+	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAP3
P17	CSI1_RX3-	In	_	LVDS D-PHY	К1892ВМ21Я	MIPI_RX1_ DATAN3
P18	GND	_	_	GND	Общий контакт	
P19	GBE0_MDI3-	Bi-Dir	_	GBE MDI	YT8531SH	TD_M_D
P20	GBE0_MDI3+	Bi-Dir	_	GBE MDI	YT8531SH	TD_P_D
P21	GBE0_LINK100#	Out/ OD	_	CMOS 3,30 B	Сток транзистора	1Y
P22	GBE0_LINK1000 #	Out/ OD	_	CMOS 3,30 B	Сток транзистора	2Y
P23	GBE0_MDI2-	Bi-Dir	_	GBE MDI	YT8531SH	TD_M_C
P24	GBE0_MDI2+	Bi-Dir	_	GBE MDI	YT8531SH	TD_P_C
P25	GBE0_LINK_AC T#	Out/ OD	_	CMOS 3,30 B	Сток транзистора	1Y
P26	GBE0_MDI1-	Bi-Dir	_	GBE MDI	YT8531SH	TD_M_B
P27	GBE0_MDI1+	Bi-Dir	_	GBE MDI	YT8531SH	TD_P_B
P28	GBE0_CTREF	Конден	сатор 0,1 мк	Ф на земли	o	
P29	GBE0_MDI0-	Bi-Dir	_	GBE MDI	YT8531SH	TD_M_A
P30	GBE0_MDI0+	Bi-Dir	_	GBE MDI	YT8531SH	TD_P_A
P31	SPI0_CS1#	Out	PU- 10 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTC_ 5/SPI0_SS_1
P32	GND	_	_	GND	Общий контакт	
P33	SDIO_WP	In	PU- 10 кОм	CMOS 3,30 B	К1892ВМ21Я	SDMMC1_WP
P34	SDIO_CMD	Bi-Dir	PU- 10 кОм	CMOS 3,30 B/ 1,80 B	К1892ВМ21Я	SDMMC1_ CMD
P35	SDIO_CD#	In	PU- 10 кОм	CMOS 3,30 B	К1892ВМ21Я	SDMMC1_ CDN

Кон-	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы
P36	SDIO_CK	Out	_	CMOS 3,30 B/ 1,80 B	К1892ВМ21Я	SDMMC1_ CLK
P37	SDIO_PWR_EN	Out	_	CMOS 3,30 B	К1892ВМ21Я	SDMMC1_ PWR
P38	GND	_	_	GND	Общий контакт	
P39	SDIO_D0	Bi-Dir	_	CMOS 3,30 B/ 1,80 B	К1892ВМ21Я	SDMMC1_ DAT0
P40	SDIO_D1	Bi-Dir	_	CMOS 3,30 B/ 1,80 B	К1892ВМ21Я	SDMMC1_ DAT1
P41	SDIO_D2	Bi-Dir	_	CMOS 3,30 B/ 1,80 B	К1892ВМ21Я	SDMMC1_ DAT2
P42	SDIO_D3	Bi-Dir	_	CMOS 3,30 B/ 1,80 B	К1892ВМ21Я	SDMMC1_ DAT3
P43	SPI0_CS0#	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTC_4/ SPI0_SS_0
P44	SPI0_CK	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTC_0/ SPI0_SCLK_O UT
P45	SPI0_DIN	In	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTC_2/ SPI0_RXD
P46	SPI0_DO	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTC_1/ SPI0_TXD
P47	GND	_	_	GND	Общий контакт	
P48	SATA_TX+	Out	_	SATA	ASM1061	S_TXP0
P49	SATA_TX-	Out	_	SATA	ASM1061	S_TXN0
P50	GND	_	_	GND	Общий контакт	
P51	SATA_RX+	In	_	SATA	ASM1061	S_RXP0
P52	SATA_RX-	In	_	SATA	ASM1061	S_RXN0
P53	GND	_	_	GND	Общий контакт	
P54	SPI1_CS0# / QSPI_CS0#	Out	_	CMOS 1,80 B	К1892ВМ21Я	QSPI1_SS0
P55	SPI1_CS1# / QSPI_CS1#	Out	_	CMOS 1,80 B	К1892ВМ21Я	QSPI1_SS1
P56	SPI1_CK / QSPI_CK	Out	_	CMOS 1,80 B	К1892ВМ21Я	QSPI1_ SCLK

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы	
P57	SPI1_DIN / QSPI_IO_1	In	_	CMOS 1,80 B	К1892ВМ21Я	QSPI1_ SISO1	
P58	SPI1_DO / QSPI_IO_0	Out	_	CMOS 1,80 B	К1892ВМ21Я	QSPI1_ SISO0	
P59	GND	_	_	GND	Общий контакт		
P60	USB0+	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD2+	
P61	USB0-	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD2-	
P62	USB0_EN_OC#	Bi- Dir/ OD	PU- 475 кОм	CMOS 3,30 B	VL817-Q7 (B0)	USBOC2	
P63	USB0_VBUS_D ET	Не испо	льзуется				
P64	USB0_OTG_ID	Не испо	льзуется				
P65	USB1+	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD1+	
P66	USB1-	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD1-	
P67	USB1_EN_OC#	Bi- Dir/ OD	PU- 475 кОм	CMOS 3,30 B	VL817-Q7 (B0)	USBOC1	
P68	GND	_	_	GND	VL817-Q7 (B0)		
P69	USB2+	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD4+	
P70	USB2-	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD4-	
P71	USB2_EN_OC#	Bi- Dir/ OD	PU- 475 кОм	CMOS 3,30 B	VL817-Q7 (B0)	USBOC4	
P72	RSVD	Не испо	льзуется				
P73	RSVD	Не испо	льзуется				
P74	USB3_EN_OC#	Bi- Dir/ OD	PU- 10 кОм	CMOS 3,30 B	К1892ВМ21Я	USB0_EN_ OCN	
P75	PCIE_A_RST#	Out	PU- 10 кОм	CMOS 3,30 B	RS0102YH8 -> К1892ВМ21Я	GPIO0_ PORTB_4	
P76	USB4_EN_OC#	Bi- Dir/ OD	PU- 10 кОм	CMOS 3,30 B	VL817-Q7 (B0)	USBOC3	
P77	PCIE_B_CKREQ #	Не испо	ользуется	•			
P78	PCIE_A_CKREQ #	In	PU- 10 кОм	OD/ CMOS	BSS138W -> CLG52147	OE_DIFF[68]	
P79	GND	_	_	GND	Общий контакт		
P80	PCIE_C_REFCK +	Не используется					
P81	PCIE_C_REFCK-	Не испо	льзуется				

Кон-	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы
P82	GND	_	_	GND	Общий контакт	
P83	PCIE_A_REFCK +	Out	_	LVDS PCIe	CLG52147	DIFF7
P84	PCIE_A_REFCK -	Out	_	LVDS PCIe	CLG52147	DIFF7
P85	GND	_	_	GND	Общий контакт	
P86	PCIE_A_RX+	In	_	LVDS PCIe	К1892ВМ21Я	PCI1_ RXPX[0]
P87	PCIE_A_RX-	In	_	LVDS PCIe	К1892ВМ21Я	PCI1_ RXN[0]
P88	GND	_	_	GND	Общий контакт	
P89	PCIE_A_TX+	Out	Serial- 100 нФ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXPX[0]
P90	PCIE_A_TX-	Out	Serial- 100 нФ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXN[0]
P91	GND	_	_	GND	Общий контакт	
P92	HDMI_D2+ / DP1_LANE0+	Out	_	TMDS	LT9611UXC	HTX_D2+
P93	HDMI_D2- / DP1_LANE0-	Out	_	TMDS	LT9611UXC	HTX_D2-
P94	GND	_	_	GND	Общий контакт	
P95	HDMI_D1+ / DP1_LANE1+	Out	_	TMDS	LT9611UXC	HTX_D1+
P96	HDMI_D1- / DP1_LANE1-	Out	_	TMDS	LT9611UXC	HTX_D1-
P97	GND	_	_	GND	Общий контакт	
P98	HDMI_D0+ / DP1_LANE2+	Out	_	TMDS	LT9611UXC	HTX_D0+
P99	HDMI_D0- / DP1_LANE2-	Out	_	TMDS	LT9611UXC	HTX_D0-
P100	GND	_	_	GND	Общий контакт	
P101	HDMI_CK+ / DP1_LANE3+	Out	_	TMDS	LT9611UXC	HTX_C+
P102	HDMI_CK-/ DP1_LANE3-	Out	_	TMDS	LT9611UXC	HTX_C-
P103	GND	_	_	GND	Общий контакт	
P104	HDMI_HPD	In	PU- 1 МОм	CMOS 1,80 B	LT9611UXC	HTX_HPD
P105	HDMI_CTRL_C K	Out	PU- 100 кОм	CMOS 1,80 B	LT9611UXC	HTX_DSCL
P106	HDMI_CTRL_D AT	Bi-Dir	PU- 100 кОм	CMOS 1,80 B	LT9611UXC	HTX_DDA
P107	DP1_AUX_SEL	Не испо	льзуется			
P108	GPIO0 / CAM0_PWR#	Bi-Dir	PU- 470 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTA_3

Кон-	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы
P109	GPIO1 / CAM1_PWR#	Bi-Dir	PU- 470 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTA_4
P110	GPIO2 / CAM0_RST#	Bi-Dir	PU- 470 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTA_5
P111	GPIO3 / CAM1_RST#	Bi-Dir	PU- 470 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTA 6
P112	GPIO4	Bi-Dir	PU- 470 кОм	CMOS 1,80 B	RS0102YH8 -> XL9555QF24	P0
P113	GPIO5 / PWM OUT	Bi-Dir	PU- 470 кОм	CMOS 1,80 B	K1892BM21Я	GPIO1_ PORTD_5
P114	GPIO6	Bi-Dir	PU- 470 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTA_0
P115	GPIO7	Bi-Dir	PU- 10 кОм	CMOS 1,80 B	RS0102YH8 -> XL9555QF24	P2
P116	GPIO8	Bi-Dir	PU- 475 кОм	CMOS 1,80 B	RS0102YH8 -> XL9555QF24	P3
P117	GPIO9	Bi-Dir	PU- 475 кОм	CMOS 1,80 B	RS0102YH8 -> XL9555QF24	P4
P118	GPIO10	Bi-Dir	PU- 475 кОм	CMOS 1,80 B	RS0102YH8 -> XL9555QF24	P5
P119	GPIO11	Bi-Dir	PU- 475 кОм	CMOS 1,80 B	RS0102YH8 -> XL9555QF24	P6
P120	GND	_	_	GND	Общий контакт	1
P121	I2C_PM_CK	Bi-Dir	PU- 2,2 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTD_3/ I2C0_SCL
P122	I2C_PM_DAT	Bi-Dir	PU- 2,2 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTD_4/ I2C0_SDA
P123	BOOT_SEL0#	In	PU- 1 кОм	CMOS 1,80 B	К1892ВМ21Я	BOOT0
P124	BOOT_SEL1#	In	PU- 1 кОм	CMOS 1,80 B	К1892ВМ21Я	BOOT1
P125	BOOT_SEL2#	In	PU- 1 кОм	CMOS 1,80 B	К1892ВМ21Я	BOOT2
P126	RESET_OUT#	Out	_	CMOS 1,80 B	Дискретная логика -> RS2G17XH6	1Y
P127	RESET_IN#	In	_	CMOS 1,80 B	Дискретная логика	_
P128	POWER_BTN#	In	PU- 10 кОм	OD/ CMOS 1,80 – 5,00 B	Диод -> XL9555QF24	P1
P129	SER0_TX	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTB_1
P130	SER0_RX	In	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTB_0
P131	SER0_RTS#	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTA_7

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы		
P132	SER0_CTS#	In	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTA_2		
P133	GND	-	_	GND	Общий контакт			
P134	SER1_TX	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTB_6/ UART0_ SOUT		
P135	SER1_RX	In	_	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTB_7/ UART0_SIN		
P136	SER2_TX	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTD_0/ UART2_ SOUT		
P137	SER2_RX	In	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTB_7/ UART2_SIN		
P138	SER2_RTS#	Не используется						
P139	SER2_CTS#	Не испо	льзуется					
P140	SER3_TX	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTB_6/ UART1_ SOUT		
P141	SER3_RX	In	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTB_5/ UART1_SIN		
P142	GND	_	_	GND	Общий контакт			
P143	CAN0_TX	Out	_	CMOS 1,80 B	К1892ВМ21Я	MFBSP0_ LDAT7		
P144	CAN0_RX	In	_	CMOS 1,80 B	К1892ВМ21Я	MFBSP0_ LDAT6		
P145	CAN1_TX	Out	_	CMOS 1,80 B	К1892ВМ21Я	MFBSP1_ LDAT7		
P146	CAN1_RX	In	_	CMOS 1,80 B	К1892ВМ21Я	MFBSP1_ LDAT6		
P147	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_		
P148	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_		
P149	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_		
P150	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_		
P151	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_		
P152	VDD_IN	PWR	_	3,00- 5,25 B	Питание	_		

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхода	Подключенная микросхема	Вывод микросхемы
P153	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_
P154	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_
P155	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_
P156	VDD_IN	PWR	_	3,00 - 5,25 B	Питание	_

Примечание – В таблице используются следующие обозначения направлений сигналов:

In - вход;

Bi-Dir- двунаправленный сигнал;

OD - открытый коллектор;

Out - выход;

PWR - питание.

Таблица 4.7 — Контакты SMARC на обратной стороне изделия

Кон-	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы
S1	CSI1_TX+/ I2C_CAM1_CK	In	PU- 2,20 кОм	TMDS / CMOS 1,80 B	NCA9546-DTSPR	SC1
S2	CSI1_TX- / I2C_CAM1_ DAT	In	PU- 2,20 кОм	TMDS / CMOS 1,80 B	NCA9546-DTSPR	SD1
S3	GND	_	_	GND	Общий контакт	
S4	RSVD	Не испо	льзуется			
S5	CSI0_TX+ / I2C_CAM0_CK	Out	PU- 2,20 кОм	CMOS 1,80 B	NCA9546-DTSPR	SC0
S6	CAM_MCK	Out	_	CMOS 1,80 B	К1892ВМ21Я	CMOS1_ CLK
S7	CSI0_TX- / I2C_CAM0_ DAT	Bi-Dir	PU- 2,20 кОм	CMOS 1,80 B	NCA9546-DTSPR	SD0
S8	CSI0_CK+	In	_	LVDS D- PHY	К1892ВМ21Я	MIPI_ RX0_ CLKP
S9	CSI0_CK-	In	_	LVDS D- PHY	К1892ВМ21Я	MIPI_ RX0_ CLKN
S10	GND		_	GND	Общий контакт	
S11	CSI0_RX0+	In	_	LVDS D- PHY	К1892ВМ21Я	MIPI_ RX0_ DATAP0

Кон-	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы
G12	Caro Divo	T.		LVDS	101000DN010	MIPI_
S12	CSI0_RX0-	In	_	D- PHY	К1892ВМ21Я	RX0_ DATAN0
S13	GND	_	_	GND	Общий контакт	BIIII (V
S14	CSI0_RX1+	In	_	LVDS D- PHY	К1892ВМ21Я	MIPI_ RX0_ DATAP1
S15	CSI0_RX1-	In	_	LVDS D- PHY	К1892ВМ21Я	MIPI_ RX0_ DATAN1
S16	GND	_	_	GND	Общий контакт	
S17	GBE1_MDI0+	Bi-Dir	_	GBE MDI	YT8531SH	TRXP0
S18	GBE1_MDI0-	Bi-Dir	_	GBE MDI	YT8531SH	TRXN0
S19	GBE1_ LINK100#	Out/ OD	_	CMOS 3,30 B	YT8531SH	LED1
S20	GBE1_MDI1+	Bi-Dir	_	GBE MDI	YT8531SH	TRXP1
S21	GBE1_MDI1-	Bi-Dir	_	GBE MDI	YT8531SH	TRXN1
S22	GBE1_ LINK1000#	Out/ OD	_	CMOS 3,30 B	YT8531SH	LED2
S23	GBE1_MDI2+	Bi-Dir	_	GBE MDI	YT8531SH	TRXP2
S24	GBE1_MDI2-	Bi-Dir	_	GBE MDI	YT8531SH	TRXN2
S25	GND	Bi-Dir	_	GND	Общий контакт	
S26	GBE1_MDI3+	Out	_	GBE MDI	YT8531SH	TRXP3
S27	GBE1_MDI3-	Bi-Dir	_	GBE MDI	YT8531SH	TRXN3
S28	GBE1_CTREF	Конден	сатор 0,1 мк	Ф на земл	лю	
S29	PCIE_D_TX+ / SERDES_0_TX+	Bi-Dir	Seriell- 220 μΦ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXPX[3]
S30	PCIE_D_TX- / SERDES_0_TX-	Bi-Dir	Seriell- 220 нФ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXN[3]
S31	GBE1_LINK_ ACT#	Out/ OD	_	CMOS 3,30 B	YT8531SH	LED0
S32	PCIE_D_RX+ / SERDES_0_RX+	Bi-Dir	-	LVDS PCIe	К1892ВМ21Я	PCI1_ RXPX[3]
S33	PCIE_D_RX- / SERDES_0_RX	Bi-Dir	-	LVDS PCIe	К1892ВМ21Я	PCI1_ RXN[3]
S34	GND	_	_	GND	Общий контакт	
S35	USB4+	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD3+
S36	USB4-	Bi-Dir	_	USB	VL817-Q7 (B0)	HSD3-

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы
S37	USB3_VBUS_ DET	In	Serial- 470 Om	USB VBUS 5,00 B	К1892ВМ21Я	USB0_ VBUS0
S38	AUDIO_MCK	Out	_	CMOS 1,80 B	SX2M12.000M20F30TNN	Output
S39	I2S0_LRCK	Bi-Dir	_	CMOS 1,8 B	К1892ВМ21Я	MFBSP0_ LDAT1
S40	I2S0_SDOUT	Out	_	CMOS 1,80 B	К1892ВМ21Я	MFBSP0_ LDAT3
S41	I2S0_SDIN	In	_	CMOS 1,8 B	К1892ВМ21Я	MFBSP0_ LDAT2
S42	I2S0_CK	Bi-Dir	_	CMOS 1,80 B	К1892ВМ21Я	MFBSP0_ LCLK
S43	ESPI_ALERT0#	Не испо	льзуется			
S44	ESPI_ALERT1#	Не испо	льзуется			
S45	MDIO_CLK	Out	_	CMOS 1,80 B	К1892ВМ21Я	EMAC1_ RGMII_ MDC
S46	MDIO_DAT	Bi-Dir	_	CMOS 1,80 B	К1892ВМ21Я	EMAC1_ RGMII_ MDIO
S47	GND	_	_	GND	Общий контакт	
S48	I2C_GP_CK	Out	PU- 2,20 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTA_0
S49	I2C_GP_DAT	Bi-Dir	PU- 2,20 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTA_1
S50	HDA_SYNC / I2S2_LRCK	Bi-Dir	_	CMOS 1,50/ 1,80 B	К1892ВМ21Я	MFBSP1_ LDAT1
S51	HDA_SDO / I2S2_SDOUT	Out	_	CMOS 1,50/ 1,80 B	К1892ВМ21Я	MFBSP1_ LDAT3
S52	HDA_SDI / I2S2_SDIN	In	_	CMOS 1,50/ 1,80 B	К1892ВМ21Я	MFBSP1_ LDAT2
S53	HDA_CK / I2S2_CK	Bi-Dir	_	CMOS 1,50/ 1,80 B	К1892ВМ21Я	MFBSP1_ LCLK
S54	SATA_ACT#	_	_	CMOS 3,30 B	Транзистор -> ASM1061	GPIO6
S55	USB5_EN_OC#	Не испо	льзуется			
S56	ESPI_IO_2 / QSPI_IO_2	Bi-Dir	_	CMOS 1,80 B	К1892ВМ21Я	QSPI1_ SISO2
S57	ESPI_IO_3 / QSPI_IO_3	Bi-Dir	_	CMOS 1,80 B	К1892ВМ21Я	QSPI1_ SISO3
S58	ESPI_RESET#	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTB_4

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы
S59	USB5+	Не испо	льзуется			
S60	USB5-	Не испо	льзуется			
S61	GND	-	_	GND	Общий контакт	
S62	USB3_SSTX+	Bi-Dir	Serial- 100 нФ	LVDS _AFB	К1892ВМ21Я	USB0_ TX0_P
S63	USB3_SSTX-	Bi-Dir	Serial- 100 нФ	LVDS _AFB	К1892ВМ21Я	USB0_ TX0_M
S64	GND	_	_	GND	Общий контакт	
S65	USB3_SSRX+	Bi-Dir	_	LVDS _AFB	К1892ВМ21Я	USB0_ RX0_P
S66	USB3_SSRX-	Bi-Dir	_	LVDS _AFB	К1892ВМ21Я	USB0_ RX0_M
S67	GND	-	_	GND	Общий контакт	•
S68	USB3+	Bi-Dir	_	LVDS AFB	К1892ВМ21Я	USB0_DP0
S69	USB3-	Bi-Dir	_	LVDS _AFB	К1892ВМ21Я	USB0_ DM0
S70	GND	_	_	GND	Общий контакт	
S71	USB2_SSTX+	Bi-Dir	_	LVD_ AFB	VL817-Q7 (B0)	SSTX4+
S72	USB2_SSTX-	Bi-Dir	_	LVDS _AFB	VL817-Q7 (B0)	SSTX4-
S73	GND	_	_	GND	Общий контакт	
S74	USB2_SSRX+	Bi-Dir		LVDS _AFB	VL817-Q7 (B0)	SSTX4+
S75	USB2_SSRX-	Bi-Dir		LVDS _AFB	VL817-Q7 (B0)	SSTX4-
S76	PCIE_B_RST#	Не испо	льзуется			
S77	PCIE_C_RST#	Не испо	льзуется			
S78	PCIE_C_RX+ / SERDES_1_RX+	In	_	LVDS PCIe	К1892ВМ21Я	PCI1_ RXPX[2]
S79	PCIE_C_RX- / SERDES_1_RX-	In	_	LVDS PCIe	К1892ВМ21Я	PCI1_ RXN[2]
S80	GND	_	_	GND	Общий контакт	
S81	PCIE_C_TX+ / SERDES_1_TX+	Out	Seriell- 220 нФ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXPX[2]
S82	PCIE_C_TX-/ SERDES_1_TX-	Out	Seriell- 220 нФ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXN[2]
S83	GND	_	_	GND	Общий контакт	
S84	PCIE_B_REFCK+	Не испо	эльзуется			
S85	PCIE_B_REFCK-	Не используется				
S86	GND	_	_	GND	Общий контакт	

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы			
S87	PCIE_B_RX+	In	_	LVDS PCIe	К1892ВМ21Я	PCI1_ RXPX[1]			
S88	PCIE_B_RX-	In	_	LVDS PCIe	К1892ВМ21Я	PCI1_ RXN[1]			
S89	GND	_	_	GND	Общий контакт				
S90	PCIE_B_TX+	Out	Seriell- 220 нФ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXPX[1]			
S91	PCIE_B_TX-	Out	Seriell- 220 нФ	LVDS PCIe	К1892ВМ21Я	PCI1_ TXN[1]			
S92	GND	_	_	GND	Общий контакт				
S93	DP0_LANE0+	Не испо	льзуется						
S94	DP0_LANE0-	Не испо	льзуется						
S95	DP0_AUX_SEL	Не испо	льзуется						
S96	DP0_LANE1+	Не испо	льзуется						
S97	DP0_LANE1-	Не испо	льзуется						
S98	DP0_HPD	Не испо	Не используется						
S99	DP0_LANE2+	Не испо	Не используется						
S100	DP0_LANE2-	Не испо	Не используется						
S101	GND	_	_	GND	Общий контакт				
S102	DP0_LANE3+	Не испо	льзуется						
S103	DP0_LANE3-	Не испо	льзуется						
S104	USB3_OTG_ID	Out	_	CMOS 3,30 B	К1892ВМ21Я	USB0_ID0			
S105	DP0_AUX+	Не испо	льзуется						
S106	DP0_AUX-	Не испо	льзуется						
S107	LCD1_BKLT_EN	Не испо	льзуется						
S108	LVDS1_CK+ / DSI1_CLK+	Out	_	LVDS LCD	LT9211	MLTXB_ M1LCP_ TD7			
S109	LVDS1_CK-/ DSI1_CLK-	Out	_	LVDS LCD	LT9211	MLTXB_ M1LCN_ TD8			
S110	GND	_	_	GND	Общий контакт				
S111	LVDS1_0+ / DSI1_D0+	Out	_	LVDS LCD	LT9211	MLTXB_ M3L0P_ TD12			
S112	LVDS1_0- / DSI1_D0-	Out	_	LVDS LCD	LT9211	MLTXB_ M3L0N_ TD13			
S113	DSI1_TE	Не испо	льзуется						

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы
S114	LVDS1_1+ / DSI1_D1+	Out	_	LVDS LCD	LT9211	MLTXB_ M2L1P_ TD10
S115	LVDS1_1- / DSI1_D1-	Out	_	LVDS LCD	LT9211	MLTXB_ M2L1N_ TD11
S116	LCD1_VDD_EN	Не испо	льзуется			
S117	LVDS1_2+ / DSI1_D2+	Out	_	LVDS LCD	LT9211	MLTXB_ M3L2P_ TDCK
S118	LVDS1_2- / DSI1_D2-	Out	_	LVDS LCD	LT9211	MLTXB_ M3L2N_ TD9
S119	GND	_	_	GND	Общий контакт	
S120	LVDS1_3+ / DSI1_D3+	Out	_	LVDS LCD	LT9211	MLTXB_ M3L3P_ TD5
S121	LVDS1_3- / DSI1_D3-	Out	_	LVDS LCD	LT9211	MLTXB_ M3L3N_ TD6
S122	LCD1_BKLT_ PWM	Не используется				
S123	GPIO13	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTC_1
S124	GND	_	_	GND	Общий контакт	
S125	LVDS0_0+ / DSI0_D0+	Out	_	LVDS LCD	LT9211	MLTXA_ M3L0P_ TD22
S126	LVDS0_0- / DSI0_D0-	Out	_	LVDS LCD	LT9211	MLTXA_ M3L0N_ TD23
S127	LCD0_BKLT_ EN	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTD_6
S128	LVDS0_1+ / DSI0_D1+	Out	_	LVDS LCD	LT9211	MLTXA_ M3L1P_ TD20
S129	LVDS0_1- / DSI0_D1-	Out	_	LVDS LCD	LT9211	MLTXA_ M3L1N_ TD21
S130	GND	-	_	GND	Общий контакт	
S131	LVDS0_2+ / DSI0_D2+	Out	_	LVDS LCD	LT9211	MLTXA_ M3L2P_ TD18
S132	LVDS0_2- / DSI0_D2-	Out	_	LVDS LCD	LT9211	MLTXA_ M3L2N_ TD19
S133	LCD0_VDD_EN	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTD_7

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы
S134	LVDS0_CK+ / DSI0_CLK+	Out	_	LVDS LCD	LT9211	MLTXA_ M3LCP_ TD16
S135	LVDS0_CK-/ DSI0_CLK-	Out	_	LVDS LCD	LT9211	MLTXA_ M3LCN_ TD17
S136	GND	_	_	GND	Общий контакт	
S137	LVDS0_3+ / DSI0_D3+	Out	_	LVDS LCD	LT9211	MLTXA_ M3L3P_ TD14
S138	LVDS0_3- / DSI0_D3-	Out	_	LVDS LCD	LT9211	MLTXA_ M3L3N_ TD15
S139	I2C_LCD_CK	Out	PU- 2,20 кОм	CMOS 1,80 B	NCA9546-DTSPR	SC2
S140	I2C_LCD_DAT	Bi-Dir	PU- 2,20 кОм	CMOS 1,80 B	NCA9546-DTSPR	SD2
S141	LCD0_BKLT_ PWM	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTD_1
S142	GPIO12	_	PU- 470 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTC_0
S143	GND	_	_	GND	Общий контакт	
S144	DSI0_TE	Не испо	льзуется			
S145	WDT_TIME_ OUT#	Out	_	CMOS 1,80 B	К1892ВМ21Я	GPIO0_ PORTB_3
S146	PCIE_WAKE#	In	PU- 10 кОм	CMOS 3,30 B	XL9555QF24	P7
S147	VDD_RTC	_	_	PWR	диод ->BL5372T	VDD
S148	LID#	In	PU- 10 кОм	CMOS 1,80 – 5,00 B	К1892ВМ21Я	P13
S149	SLEEP#	In	PU- 10 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTB_3
S150	VIN_PWR_ BAD#	In	PU- 10 кОм	CMOS 1,80 – 5,00 B	EN источников питания, ло	гика сброса
S151	CHARGING#	In	PU- 10 кОм	CMOS 1,80 – 5,00 B	К1892ВМ21Я	GPIO1_ PORTC_2
S152	CHARGER_ PRSNT#	In	PU- 10 кОм	CMOS 1,80 – 5,00 B	К1892ВМ21Я	GPIO1_ PORTC_3
S153	CARRIER_ STBY#	Out	_	CMOS 1,80 B	Процессор	GPIO1_ PORTC_5
S154	CARRIER_PWR_ ON	Out	_	CMOS 1,80 B	Дискретная логика сброса -> RS2G17XH6	1Y

Кон- такт	Цепь	На- прав- ление сиг- нала	Терми- нация	Тип входа/ выхо- да	Подключенная микросхема	Вывод микро- схемы
S155	FORCE_RECOV#	In	PU- 10 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTC_6/ SSI1_SS_3 _N
S156	BATLOW#	In	PU- 10 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTD_0
S157	TEST#	In	PU- 10 кОм	CMOS 1,80 B	К1892ВМ21Я	GPIO1_ PORTC_4
S158	GND	_	_	GND	Общий контакт	

Примечание – В таблице используются следующие обозначения направлений сигналов:

4.7.2 Отладочный порт JTAG

Соединитель JTAG предназначен для подключения эмулятора MC-USB-JTAG производства АО НПЦ «ЭЛВИС» (см. Раздел 7 «Дополнительная документация» настоящего документа). Назначение контактов соединителя XP1 изделия приведено в таблице 4.8.

Таблица 4.8 — Порт JTAG

Контакт	Цепь	Тип	Описание
1	GND	Питание	Общий контакт
2	MFG_MODE#	Не используется	
3	JTAG_RESET_IN#	Вход	Сброс процессора
4	+5.5V OTP	Питание	Питание OTP (VPP)
5	JTAG_TCK	Вход	Тактовый сигнал
6	JTAG_TDI	Вход	Вход данных
7	JTAG_TDO	Выход	Выход данных
8	JTAG_TMS	Вход	Выбор режима
9	JTAG_TRST#	Вход	Установка исходного состояния/сигнал сброса
10	VDD_JTAG	Питание	Выход +1,8 В

4.8 Сигналы прерываний периферийных устройств

Сигналы прерываний периферийных устройств приведены в таблице 4.9.

In – вход:

Ві-Dіг – двунаправленный сигнал;

OD – открытый коллектор;

Out-выход.

Таблица 4.9 — Сигналы прерываний

Описание источника	Источник прерывания: вывод	Микросхема- приемник прерывания,	Вывод микросхемы
Шина SMB	SMARC: SMB_ALERT#	К1892ВМ21Я	GPIO0_PORTA_1
Видеоконвертер RGB->LVDS	LT9211: INT	К1892ВМ21Я	GPIO0_PORTA_6
Пользовательское прерывание	SMARC: GPIO6	К1892ВМ21Я	GPIO0_PORTA_0
Пользовательское прерывание	SMARC: GPIO3	К1892ВМ21Я	GPIO1_PORTA_6
Расширитель GPIO	XL9555QF24: INT	К1892ВМ21Я	GPIO1_PORTA_7
Пользовательское прерывание	SMARC: GPIO4	XL9555QF24	P0
Кнопка питания	SMARC: POWER_BTN#	XL9555QF24	P1
Пользовательское прерывание	SMARC: GPIO7	XL9555QF24	P2
Пользовательское прерывание	SMARC: GPIO8	XL9555QF24	P3
Пользовательское прерывание	SMARC: GPIO9	XL9555QF24	P4
Пользовательское прерывание	SMARC: GPIO10	XL9555QF24	P5
Пользовательское прерывание	SMARC: GPIO11	XL9555QF24	P6
Шина РСІ	PCIE_WAKE#	XL9555QF24	P7
Концевик вскрытия корпуса	SMARC: LID#	XL9555QF24	P13
Видеоконвертер DSI->HDMI	LT9611UXC: INTIO_GPIO5	XL9555QF24	P14
RTC Часы реального времени	BL5372T: INTRA	XL9555QF24	P15
Сеть Ethernet0	YT8531SH: INT_N/PME_N	XL9555QF24	P16
Сеть Ethernet1	YT8531SH: INT_N/PME_N	XL9555QF24	P17

4.9 Интерфейсы

4.9.1 Интерфейс РСІе

В изделии доступен один порт PCIe. Описание интерфейса PCIe приведено в таблице 4.10.

Таблица 4.10 — Интерфейс РСІе

Интерфейс SMARC	Порт процессора	Примечание
PCIE_A	PCI1_TX[0] / PCI1_RX[0]	
PCIE_B	PCI1_TX[1] / PCI1_RX[1]	

Интерфейс SMARC	Порт процессора	Примечание
PCIE_C	PCI1_TX[2] / PCI1_RX[2]	
PCIE_D	PCI1_TX[3] / PCI1_RX[3]	
PCIE_A_REFCK	_	Выход DIFF0 генератора частоты SI52146-A01AGMR
PCIE_A_RST#	GPIO0_B4	Подключен к соединителю SMARC через преобразователь уровней SN74AVC2T244DQER
PCIE_WAKE# (S146)		Не используется

4.9.2 Интерфейс SATA

Интерфейс SATA реализован с помощью PCIe-SATA контроллера ASM1061. Описание интерфейса SATA приведено в таблице 4.11.

Таблица 4.11 — Интерфейс SATA

Сигнал SMARC	Вывод ASM1061	Примечание	
SATA_TX+	STXP_A		
SATA_TX-	STXN_A	Согласно стандарту SMARC 2.1	
SATA_RX+	SRXP_A	проходные конденсаторы в сигнальных цен установлены в процессорном модуле	
SATA_RX-	SRXN_A		
SATA_ACT#	LED	Сигнал инвертирован относительно выхода ASM1061	

4.9.3 Интерфейс Ethernet

В изделии используются два приемопередатчика Ethernet YT8531SH. К порту EMAC0 процессора подключен приемопередатчик Ethernet с адресом 0x04, к порту EMAC1 процессора — приемопередатчик Ethernet с адресом 0x05. Описание интерфейса 1G Ethernet приведено в таблице 4.12.

Таблица 4.12 — Интерфейс 1G Ethernet

Сигнал SMARC	Подключенная микросхема: вывод	Примечание
GBE0_MDI0+	GBE0 PHY YT8531SH: TRXP0	
GBE0_MDI0-	GBE0 PHY YT8531SH: TRXN0	
GBE0_MDI1+	GBE0 PHY YT8531SH: TRXP1	Порт ЕМАСО процессора
GBE0_MDI1-	GBE0 PHY YT8531SH: TRXN1	
GBE0_MDI2+	GBE0 PHY YT8531SH: TRXP2	

Сигнал SMARC	Подключенная микросхема: вывод	Примечание	
GBE0_MDI2-	GBE0 PHY YT8531SH: TRXN2		
GBE0_MDI3+	GBE0 PHY YT8531SH: TRXP3		
GBE0_MDI3-	GBE0 PHY YT8531SH: TRXN3		
GBE0_LINK100#	GBE0 PHY YT8531SH: LED_1		
GBE0_LINK1000#	GBE0 PHY YT8531SH: LED_0	Подключен к соединителю SMARC через транзистор	
GBE0_LINK_ACT#	GBE0 PHY YT8531SH: LED_2		
GBE0_CTREF	Соединен с землей через конденсатор в с PHY YT8521SH-CA	оответствии с требованиями	
GBE0_SDP	Не используется		
GBE1_MDI0+	GBE1 PHY YT8531SH: TRXP0		
GBE1_MDI0-	GBE1 PHY YT8531SH: TRXN0	Порт ЕМАС1 процессора	
GBE1_MDI1+	GBE1 PHY YT8531SH: TRXP1		
GBE1_MDI1-	GBE1 PHY YT8531SH: TRXN1		
GBE1_MDI2+	GBE1 PHY YT8531SH: TRXP2		
GBE1_MDI2-	GBE1 PHY YT8531SH: TRXN2		
GBE1_MDI3+	GBE1 PHY YT8531SH: TRXP3		
GBE1_MDI3-	GBE1 PHY YT8531SH: TRXN3		
GBE1_LINK100#	GBE1 PHY YT8531SH: LED_1		
GBE1_LINK1000#	GBE1 PHY YT8531SH: LED_0	Подключен к соединителю SMARC через транзистор	
GBE1_LINK_ACT#	GBE1 PHY YT8531SH: LED_2		
GBE1_CTREF	Соединен с землей через конденсатор в соответствии с требованиями PHY YT8521SH-CA		
GBE1_SDP	Не используется		
MDIO_CLK	Процессор: EMAC1_RGMII_MDC		
MDIO_DAT	Процессор: EMAC1_RGMII_MDIO		

Сигналы прерываний интерфейса Ethernet приведены в таблице 4.9 (см. 4.8).

4.9.4 Интерфейс CSI

В изделии доступны два порта CSI. Подключение интерфейса CSI приведено в таблице 4.13.

Таблица 4.13 — Интерфейс CSI

Сигнал SMARC	Вывод процессора
CSI0_RX0+	MIPI_RX0_DATAP0
CSI0_RX0-	MIPI_RX0_DATAN0
CSI0_RX1+	MIPI_RX0_DATAP1
CSI0_RX1-	MIPI_RX0_DATAN1
CSI0_CK+	MIPI_RX0_CLKP
CSI0_CK-	MIPI_RX0_CLKN
CSI1_RX0+	MIPI_RX1_DATAP0
CSI1_RX0-	MIPI_RX1_DATAN0
CSI1_RX1+	MIPI_RX1_DATAP1
CSI1_RX1-	MIPI_RX1_DATAN1
CSI1_RX2+	MIPI_RX1_DATAP2
CSI1_RX2-	MIPI_RX1_DATAN2
CSI1_RX3+	MIPI_RX1_DATAP3
CSI1_RX3-	MIPI_RX1_DATAN3
CSI1_CK+	MIPI_RX1_CLKP
CSI1_CK-	MIPI_RX1_CLKN

Описание сигналов управления модулями внешних камер (2 шт.) приведено в таблице 4.14.

Таблица 4.14 — Сигналы управления модулями внешних камер

Сигнал SMARC	Вывод процессора	Примечание
CAM0_PWR#	GPIO0_PORTA_3	
CAM0_RST#	GPIO0_PORTA_5	
CAM1_PWR#	GPIO0_PORTA_4	
CAM1_RST#	GPIO1_PORTA_6	
CAM_MCK	CMOS1_CLK	
I2C_CAM0_CK	_	
I2C_CAM0_DAT	_	C. 40 11 5 422
I2C_CAM1_CK	_	См. 4.9.11, таблица 4.22
I2C_CAM1_DAT	_	

4.9.5 Интерфейс LVDS

В изделии доступен один порт RGB to LVDS. Данный интерфейс реализован с помощью конвертера LT9211. Подключение приведено в таблице 4.15.

Таблица 4.15 — Интерфейс LVDS

Сигнал SMARC	Вывод LT9211
LVDS_A0_N	MLTXA_M3L0N_TD23
LVDS_A0_P	MLTXA_M3LOP_TD22
LVDS_A1_N	MLTXA_M2L1N_TD19
LVDS_A1_P	MLTXA_M2L1P_TD20
LVDS_A2_N	MLTXA_MCL2N_TD19
LVDS_A2_P	MLTXA_MCL2P_TD18
LVDS_A3_N	MLTXA_M0L3N_TD15
LVDS_A3_P	MLTXA_M0L3P_TD14
LVDS_ACK_N	MLTXA_M1LCN_TD17
LVDS_ACK_P	MLTXA_M1LCP_TD16
LVDS_B0_N	MLTXB_M3L0N_TD13
LVDS_B0_P	MLTXB_M3LOP_TD12
LVDS_B1_N	MLTXB_M2L1N_TD11
LVDS_B1_P	MLTXB_M2L1P_TD10
LVDS_B2_N	MLTXB_MCL2N_TD9
LVDS_B2_P	MLTXB_MCL2P_TDCK
LVDS_B3_N	MLTXB_M0L3N_TD6
LVDS_B3_P	MLTXB_M0L3P_TD5
LVDS_BCK_N	MLTXB_M1LCN_TD8
LVDS_BCK_P	MLTXB_M1LCP_TD7

4.9.6 Интерфейс HDMI

Данный интерфейс реализован с помощью DSI-HDMI конвертера LT9611UXC. Подключение интерфейса HDMI приведено в таблице 4.16.

Таблица 4.16 — Интерфейс HDMI

Сигнал SMARC	Вывод LT9611UXC
HDMI_D2+	HTX_D2+
HDMI_D2-	HTX_D2
HDMI_D1+	HTX_D1+
HDMI_D1-	HTX_D1
HDMI_D0+	HTX_D0+
HDMI_D0-	HTX_D0
HDMI_CK+	HTX_C+
HDMI_CK-	HTX_C
HDMI_CTRL_CK	HTX_DSCL
HDMI_CTRL_DAT	HTX_DSDA
HDMI_HPD	HTX_HPD

4.9.7 Интерфейс USB

В изделии доступны шесть портов USB: пять портов, которые реализованы с помощью USB 2.0 концентратора VL817-Q7 (B0), и один порт 3.0 ОТG. Подключение интерфейса USB приведено в таблице 4.17.

Таблица 4.17 — Интерфейс USB

Интерфейс SMARC	Порт процессора	Порт USB HUB (VL817-Q7 (ВО))	Примечание
USB0	_	Порт 2	USB2.0
USB1	_	Порт 1	USB2.0
USB2	_	Порт 4	USB3.1 GEN1
USB3	USB0	_	USB 3.1 GEN1 с поддержкой dual role
USB4	_	Порт 3	USB2.0
USB5	_	-	Не используется

Подключение сигналов порта USB0 процессора приведено в таблице 4.18.

Таблица 4.18 — Сигналы порта USB0

Сигнал SMARC	Вывод процессора
USB3-	USB0_DM0
USB3+	USB0_DP0

Сигнал SMARC	Вывод процессора
USB3_SSRX-	USB0_RX0_M
USB3_SSRX+	USB0_RX0_P
USB3_SSTX-	USB0_TX0_M
USB3_SSTX+	USB0_TX0_P
USB3_VBUS_DET	USB0_VBUS0
USB3_EN_OC#	USB0_EN_OCN
USB3_OTG_ID	USB0_ID0

4.9.8 Интерфейс UART

В изделии доступны четыре порта UART. Подключение интерфейса UART приведено в таблице 4.19.

Таблица 4.19 — Интерфейс UART

Интерфейс SMARC	Порт процессора	Примечание
SER0	UART3	UART с сигналами RTS CTS
SER1	UART0	Отладочная консоль встроенного загрузчика
SER2	UART2	
SER3	UART1	Отладочная консоль операционной системы

4.9.9 Интерфейс I2S

В изделии доступны два порта Audio (I2S). Описание интерфейса I2S приведено в таблице 4.20.

Таблица 4.20 — Интерфейс I2S

Сигнал SMARC	Вывод процессора	Примечание
AUDIO_MCK	_	Источник: генератор кварцевый (SX2M12.000M20F30TNN), тактовая частота 12 МГц
I2S0_CK	MFBSP0_LCLK	
I2S0_LRCK	MFBSP0_LDAT1	
I2S0_SDIN	MFBSP0_LDAT2	
I2S0_SDOUT	MFBSP0_LDAT3	
I2S2_CK	MFBSP1_LCLK	

Сигнал SMARC	Вывод процессора	Примечание
I2S2_LRCK	MFBSP1_LDAT1	
I2S2_SDIN	MFBSP1_LDAT2	
I2S2_SDOUT	MFBSP1_LDAT3	

4.9.10 Интерфейс SDIO

Сигналы интерфейса SD-карты соединителя SMARC подключены к контроллеру SDMMC1 процессора. Описание интерфейса SDIO приведено в таблице 4.21.

Таблица 4.21 — Интерфейс SDIO

Сигнал SMARC	Вывод процессора	Примечание
SDIO_D0	SDMMC1_DAT0	
SDIO_D1	SDMMC1_DAT1	
SDIO_D2	SDMMC1_DAT2	
SDIO_D3	SDMMC1_DAT3	
SDIO_CK	SDMMC1_CLK	
SDIO_CD#	SDMMC1_CDN	
SDIO_CMD	SDMMC1_CMD	
SDIO_WP	SDMMC1_WP	
SDIO_PWR_EN	SDMMC1_PWR	
_	SDMMC1_18EN	Подключен к входу коммутатора питания RT9705B

4.9.11 Интерфейс I2C

В изделии используются восемь шин интерфейса I2C. Описание шин I2C приведено в таблице 4.22.

Таблица 4.22 — Интерфейс I2C

Интерфейс SMARC	Шина 12С	Порт процессора	Подключенное устройство: 12С адрес
_	I2C_LOCAL	I2C2	FLASH-ID BL24C32A 0x50 LVDS LT9211 0x5A HDMI LT9611UXC 0x56 PLL CLG52147 0x6B RTC BL5372T 0x32
I2C_PM	I2C_PM	I2C0	_
I2C_GP	I2C_GP	I2C1	_

Интерфейс SMARC	Шина 12С	Порт процессора	Подключенное устройство: I2С адрес
I2C_CAM0	I2C_CAM0		канал S0 мультиплексора I2C (NCA9546- DTSPR): 0x70
I2C_CAM1	I2C_CAM1	I2C3	канал S1 мультиплексора I2C (NCA9546- DTSPR): 0x70
I2C_LCD	I2C_LCD	12C3	канал S2 мультиплексора I2C (NCA9546- DTSPR): 0x70
	I2C3		GPIO EXPANDER 0x20
HDMI_CTRL	I2C_HDMI*	_	_
_	_	I2C4	Не используется
* I2С шина для HDMI-дисплея управляется передатчиком HDMI.			

4.9.12 Интерфейс SPI

Сигналы интерфейса SPI соединителя SMARC подключены к порту SPI0 процессора. Описание интерфейса SPI приведено в таблице 4.23.

Таблица 4.23 — Интерфейс SPI

Сигнал SMARC	Вывод процессора
SPIO_CS0#	GPIO0_PORTC_4/SPI0_SS_0
SPI0_CS1#	GPIO0_PORTC_5/SPI0_SS_1
SPIO_CK	GPIO0_PORTC_0/SPI0_SCLK_OUT
SPI0_DIN	GPIO0_PORTC_2/SPI0_RXD
SPIO_D0	GPIO0_PORTC_1/SPI0_TXD

4.9.13 Интерфейс QSPI

Сигналы интерфейса QSPI соединителя SMARC подключены к порту QSPI1 процессора. Подключение интерфейса QSPI приведено в таблице 4.24.

Таблица 4.24 — Интерфейс QSPI

Сигнал SMARC	Вывод процессора
QSPI_CS0#	QSPI1_SS0
QSPI_CS1#	QSPI1_SS1
QSPI_CK	QSPI1_SCLK
QSPI_IO_0	QSPI1_SISO0
QSPI_IO_1	QSPI1_SISO1
QSPI_IO_2	QSPI1_SISO2

Сигнал SMARC	Вывод процессора	
QSPI_IO_3	QSPI1_SISO3	
Примечание – К порту QSPI0 процессора подключена память QSPI-флеш (см.4.4.4)		

4.9.14 Интерфейс CAN

В изделии доступны два порта CAN. Подключение интерфейса CAN приведено в таблице 4.25.

Таблица 4.25 — Интерфейс CAN

Сигнал SMARC	Вывод процессора
CAN0_RX	MFBSP0_LDAT6
CAN0_TX	MFBSP0_LDAT7
CAN1_RX	MFBSP1_LDAT6
CAN1_TX	MFBSP1_LDAT7

4.9.15 Интерфейс GPIO

Сигналы входов/выходов общего назначения (GPIO) соединителя SMARC подключены к соответствующим выводам процессора. Описание интерфейса GPIO приведено в таблице 4.26.

Таблица 4.26 — Интерфейс GPIO

Сигнал SMARC	Вывод процессора	Примечание
GPIO0/CAM0_PWR#	GPIO0_PORTA_3*	
GPIO1/CAM1_PWR#	GPIO0_PORTA_4*	
GPIO2/CAM0_RST#	GPIO0_PORTA_5*	
GPIO3/CAM1_RST#	GPIO1_PORTA_6*	
GPIO4	_	Вывод сигнала GPIO EXPANDER P0 к процессору «СКИФ» через шину I2C3*
GPIO5/PWM_OUT	GPIO1_PORTD_5	
GPIO6	_	Вывод сигнала GPIO EXPANDER P1 к процессору «СКИФ» через шину I2C3*
GPIO7	_	Вывод сигнала GPIO EXPANDER Р2 к процессору «СКИФ» через шину I2C3*

Сигнал SMARC	Вывод процессора	Примечание
GPIO8	_	Вывод сигнала GPIO EXPANDER РЗ к процессору «СКИФ» через шину I2C3*
GPIO9	_	Вывод сигнала GPIO EXPANDER Р4 к процессору «СКИФ» через шину I2C3*
GPIO10		Вывод сигнала GPIO EXPANDER Р5 к процессору «СКИФ» через шину I2C3*
GPIO11	_	Вывод сигнала GPIO EXPANDER P6 к процессору «СКИФ» через шину I2C3*
GPIO12	GPIO1_PORTC_0	
GPIO13	GPIO1_PORTC_1	
* Поддерживается работа с	в внешними прерываниями.	

4.10 Питание

Электропитание изделия осуществляется от внешнего источника постоянного тока:

- основное напряжение питания: 5,0 В с допустимым отклонением ± 5 %.
 Предусмотрена работа изделия при напряжении питания 3,3 В с допустимым отклонением ± 5 %, при этом требуется дополнительная настройка изделия согласно А. 2 Приложения А;
- напряжение питания RTC: 3,3 В с допустимым отклонением ± 5 %.

Значения входных напряжений питания приведены в таблице 4.27.

Таблица 4.27 — Входные напряжения питания

Сигнал SMARC	Диапазон напряжения, В	Примечание
VDD_IN	5 ± 5 %	Предусмотрена работа изделия при напряжении питания в диапазоне 3,3 ± 5 % В, при этом требуется дополнительная настройка изделия согласно А. 2 Приложения А
VDD_RTC	3,3 ± 5 %	
GND	Общий контакт	

Описание цепей вторичного питания изделия приведено в таблице 4.28.

Таблица 4.28 — Вторичное питание

Цепь питания	Номинальное напряжение, В	Источник питания: вывод
+0v9SDR	0,9	IS66066
+0.9SDR-PLL	0,9	IS66066 -> LC фильтр
+0.9SDR-PCIO	0,9	IS66066 -> LC фильтр
+0.9SDR-PCI1	0,9	IS66066 -> LC фильтр
+0v9	0,9	IS66066
+0v9A1-CORE	0,9	IS66066 -> LC фильтр
+0v9PLL-I-S-LSP1	0,9	IS66066 -> LC фильтр
+0v9PLL-HSP	0,9	IS66066 -> LC фильтр
+0v9PLL-DDR	0,9	IS66066 -> LC фильтр
+0v9PLL-LSPO	0,9	IS66066 -> LC фильтр
+0v9A-MEDIA	0,9	IS66066 -> LC фильтр
+0.9PLL-MEDIA	0,9	IS66066 -> LC фильтр
+0v9A-CPU	0,9	IS66066 -> LC фильтр
+3v3	3,3	SY8003ADFC
+1v8_DDR	1,8	SY8003ADFC -> RT9043GB
+1v8A_LVDS	1,8	SY8003ADFC -> RT9043GB
+1v8A_HDMI	1,8	SY8003ADFC -> RT9043GB
+1v2_HDMI	1,2	SY8003ADFC -> RS3236-1.2YUTDN4
+1v5_1v8SDR	1,8/1,5	SY8003ADFC -> RT9043GB
+1v2USB	1,2	SY8003ADFC -> RT9043GB
+3v3_CLK	3,3	SY8003ADFC -> RT9043GB
+3v3clkc	3,3	SY8003ADFC -> RT9043GB -> LC фильтр
+3v3clkd	3,3	SY8003ADFC -> RT9043GB -> LC фильтр
+3v3SPI_PWR	3,3	SY8003ADFC -> RT9043GB -> LC фильтр
+3v3ETH0	3,3	SY8003ADFC -> RT9043GB -> LC фильтр
+3v3ETH1	3,3	SY8003ADFC -> RT9043GB -> LC фильтр
+3v3USB	3,3	SY8003ADFC -> RT9043GB -> LC фильтр
+3v3HDMI	3,3	SY8003ADFC -> RT9043GB -> LC фильтр

Цепь питания	Номинальное напряжение, В	Источник питания: вывод
+3v3SATA	3,3	SY8003ADFC -> RT9043GB -> LC фильтр
+1.2SATA	1,2	SY8003ADFC -> ASM1061
+VCC_RTC	~3,0	+VDD_RTC со SMARC соединителя
+1v8	1,8	SY8003ADFC
+1v8LVDS	1,8	SY8003ADFC -> LC фильтр
+1v8HDMI	1,8	SY8003ADFC -> LC фильтр
+1v8ETH0	1,8	SY8003ADFC -> LC фильтр
+1v8ETH1	1,8	SY8003ADFC -> LC фильтр
+1v8USB	1,8	SY8003ADFC -> LC фильтр
+1v8A-CORE	1,8	SY8003ADFC -> LC фильтр
+1v8A-MEDIA	1,8	SY8003ADFC -> LC фильтр
+1v8A-CPU	1,8	SY8003ADFC -> LC фильтр
+1v1DDR	1,1	SY8003ADFC
+3318SDIO1	3,3/1,8	RT9705

Таблица 4.29 — Цепи питания ОТР (VPP, VQQ)

Цепь питания	Номинальное напряжение, В	Источник питания: вывод
+5v5VPP	5,5	Разъём JTAG (XP1:4) -> RS8031XF
+2.75VQQ	2,75	RS8031XF вывод OUT

5. РАБОТА ИЗДЕЛИЯ

5.1 Установка и подключение изделия

- 5.1.1 Сведения по установке и подключению изделия приведены в А. 1 Приложения А настоящего документа.
- 5.1.2 Установка режимов работы изделия (скорости передачи данных, типа сетевого обмена) производится посредством программы, поставляемой производителем.

Примечание – Изделие поставляется с предустановленным программным обеспечением ОС Linux (см. Раздел 7 «Дополнительная документация» настоящего документа).

- 5.1.3 Для проверки работоспособности изделия необходимо включить электропитание персонального компьютера (ПК) и выполнить следующие действия:
 - подключить порт UART0 изделия к ПК;
 - запустить терминал UART на ПК;
 - подать питание на изделие.
 При подаче питания должен загореться зеленый светодиод.
- 5.1.3.1 При выборе режима загрузки "QSPI0" будет произведена загрузка предустановленной ОС Linux из памяти eMMC. При этом в порт UART0 будет выведена консоль ОС Linux.
- 5.1.3.2 Для обновления прошивок QSPI-памяти и eMMC следует воспользоваться инструкцией из документации MCom-03 Linux SDK, раздел "Linux SDK Руководство программиста" в части "Дистрибутив Buildroot", прошивка соответствующих компонентов (см. Раздел 7 «Дополнительная документация» настоящего документа).
- 5.1.4 Запуск процессорного модуля ELV-MC03-SMARC с отладочной платой ELV-SMARC-CB демонстрируется в Руководстве пользователя «Модуль отладочный ELV-SMARC-CB rev.3.3.0», раздел 7 (см. Раздел 7 «Дополнительная документация» настоящего документа).

6. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ

Перечень возможных неисправностей изделия и рекомендации по действиям при их устранении приведены в таблице 6.1.

Таблица 6.1 — Возможные неисправности изделия

Проявление неисправности	Вероятная причина	Способ устранения
При включении питания	Отсутствует входное	Проверить наличие выходного
не горит зеленый	напряжение питания	напряжения блока питания.
светодиод изделия		Устранить причину отсутствия
		подачи питания
	Не плотное подключение	Проверить надежность стыковки
	изделия к соединителю на	изделия с платой-носителем
	плате-носителе	
При включении питания	Неисправность импульсных	Проверить наличие выходного
горит оранжевый	источников питания	напряжения питания на импульсных
светодиод изделия		источниках. Заменить при
		неисправности

7. ДОПОЛНИТЕЛЬНАЯ ДОКУМЕНТАЦИЯ

Дополнительная документация доступна на техпортале support.elvees.com:

- Руководство пользователя на Процессор,
 https://support.elvees.com/docs/Microchips/K1892VM21YA/#docs;
- Инструкции по сборке, запуску ОС Linux (раздел "ПО"),
 https://support.elvees.com/docs/Microchips/SKIF/Boards/#elv-mc03-smarc;
- Руководство системного программиста,
 https://support.elvees.com/docs/Microchips/K1892VM21YA/#soft;
- Руководство пользователя «Модуль отладочный ELV-SMARC-CB rev.3.3.0», https://support.elvees.com/docs/Microchips/SKIF/Boards/?modules=smarc-cb-rev3.3#elv-smarc-cb-r33;
- Документация MCom-03 Linux SDK,
 https://support.elvees.com/docs/Microchips/K1892VM21YA/#soft;
- Документация на «Эмулятор MC-USB-JTAG»,
 https://support.elvees.com/docs/Solutions/MC-USB-JTAG;
- Описание стандарта SMARC 2.1, https://support.elvees.com/go/smarc211;
- Ссылки на другие инструкции, https://support.elvees.com/docs/Instructions.

8. ОТЛИЧИЯ ВЫПУСКАЕМЫХ ВЕРСИЙ ИЗДЕЛИЯ

8.1 Отличия модулей процессорных ELV-MC03-SMARC версий 3.0 и 1.1

Модуль процессорный ELV-MC03-SMARC rev.3.0 может быть не совместим с модулями отладочными, разработанными для модуля процессорного ELV-MC03-SMARC rev.1.1.

В версии 3.0 модуля процессорного ELV-MC03-SMARC по сравнению с версией 1.1 произошли следующие изменения:

- 1) Заменён выход DSI на LVDS:
- Rev1.x: Выведен DSI с СнК «СКИФ», RGB СнК «СКИФ» подключена к HDMI- передатчику (ADV7513BSWZ);
- Rev3.x: DSI СнК К1892ВМ21Я подключена к HDMI (LT9611UXC), RGB СнК К1892ВМ21Я подключена к LVDS-передатчику (LT9211);
- 2) Изменилась конфигурация USB-портов:
- Rev1.x: 1x USBSS Dual role + 5x USB-HS (USB5742/2G);
- Rev3.0: 1x USBSS Dual role + 1x USBSS (VL817-Q7) + 3x USBHS (VL817-Q7).
- 3) Добавлена возможность работы с ОТР-памятью процессора К1892ВМ21Я (подаётся питание на выводы VPP, VQQ).

9. КОНТАКТНАЯ ИНФОРМАЦИЯ

Предприятие-изготовитель: Акционерное общество Научно-производственный центр «Электронные вычислительно-информационные системы» (АО НПЦ «ЭЛВИС»).

Адрес предприятия-изготовителя: 124460, Москва, Зеленоград, ул. Конструктора Лукина, дом 14, строение 14; телефон: +7 (495) 926-79-57; электронный адрес: https://elvees.ru.

Потребитель может обратиться в отдел технической поддержки:

- по электронной почте: support@elvees.com;
- по телефону: +7 (495) 913-32-51;
- телеграм-чат: https://t.me/elvees_chat.

10. ИСТОРИЯ ИЗМЕНЕНИЙ

10.10.2025: Исправлен Рисунок 1. Структурная схема модуля процессорного ELV-MC03-SMARC

ПРИЛОЖЕНИЕ А

Установка и подключение изделия

А. 1 Установка изделия на плату-носитель

Изделие с помощью краевого соединителя (см. 4.7) подключается к розетке стандарта SMARC 2.1, расположенной на плате-носителе.

Габаритные и присоединительные размеры изделия (соответствуют стандарту SMARC 2.1) приведены на рисунке A. 1.

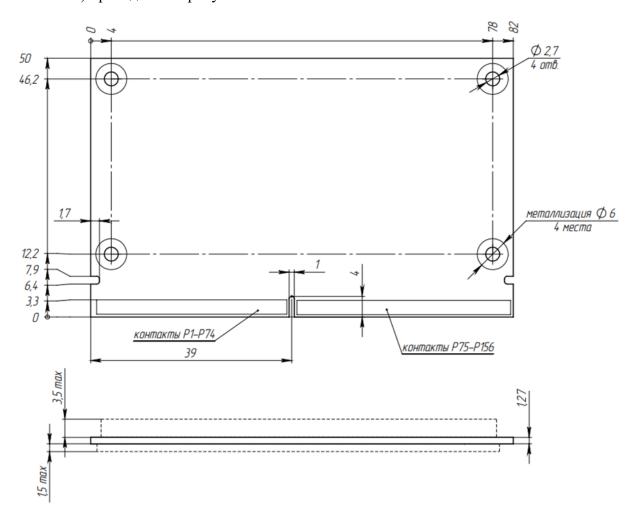


Рисунок А. 1 — Габаритные размеры изделия

А. 2 Эксплуатация изделия с напряжением питания 3,3 В

Для работы изделия при напряжении питания $3.3~\mathrm{B}$ с допустимым отклонением $\pm\,5\,\%$ необходимо произвести пайку перемычки контактной 1, показанной на рисунке A.2.

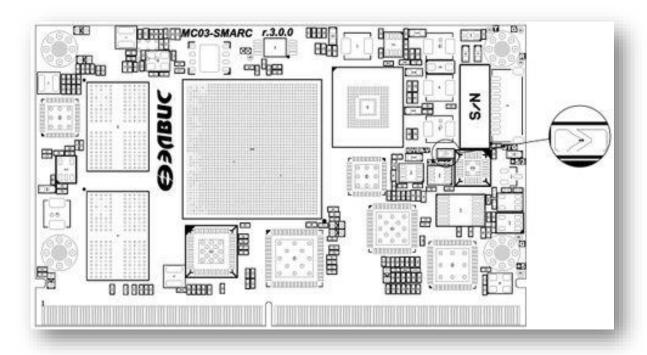


Рисунок А.2 — Схематичное изображение изделия, вид сверху Припой осуществлять маркой ПОС 61 ГОСТ 21930-76.

ВНИМАНИЕ

Запрещается пайка более 3 с во избежание перегрева.